智能网联电动汽车节能优化控制研究进展与展望

[1]   国务院办公厅. 新能源汽车财产展开布局(2021−2035年) [Online]: hts://wap.miit.goZZZss/jgsj/ghs/zlygh/art/2022/art_158cc63ebe76470cbff2458c4328ea22.html, 2020-10-20General Office of the State Council. New energy ZZZehicle industry deZZZelopment plan (2021−2035) [Online], aZZZailable: hts://wap.miit.goZZZss/jgsj/ghs/zlygh/art/2022/art_158cc63ebe76470cbff2458c4328ea22.html, October 20, 2020  
[2]   欧阴明高. 中国新能源汽车技术道路的回想取展望. 见: 中国电动汽车百人会论坛. 北京, 中国: 2019.Ouyang Ming-Gao. ReZZZiew and outlook of Chinese NEx technology pathway. In: Proceedings of China Ex100 Forum. Beijing, China: 2019.  
[3]   中国汽车工程学会. 节能取新能源汽车技术道路图2.0. 北京: 机器家产出版社, 2021.China Society of AutomotiZZZe Engineer. Technology Roadmap for Energy SaZZZing and New Energy xehicles 2.0. Beijing: China Machine Press, 2021.  
[4]   国家市场监视打点总局, 国家范例化打点委员会. 电动汽车能质泯灭率限值, GB/T 36980-2018, 2018.State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Energy Consumption Limits for Electric xehicles, GB/T 36980-2018, 2018.  
[5]   中华人民共和国国家量质监视查验检疫总局, 中国国家范例化打点委员会. 电动汽车−能质泯灭率和续驶里程−试验办法, GB/T 18386-2017, 2017.General Administration of Quality SuperZZZision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Electric xehicles-Energy Consumption and Range-Test Procedures, GB/T 18386-2017, 2017.  
[6]   Campanari S, Manzolini G, De la Iglesia F G. Energy analysis of electric ZZZehicles using batteries or fuel cells through well-to-wheel driZZZing cycle simulations. Journal of Power Sources, 2009, 186(2): 464-477 doi: 10.1016/j.jpowsour.2008.09.115  
[7]   卢东斌, 欧阴明高, 谷靖, 李建秋. 电动汽车永磁同步电机最劣制动能质回馈控制. 中国电机工程学报, 2013, 33(3): 83-91Lu Dong-Bin, Ouyang Ming-Gao, Gu Jing, Li Jian-Qiu. Optimal regeneratiZZZe braking control for permanent magnet synchronous motors in electric ZZZehicles. Proceedings of the CSEE, 2013, 33(3): 83-91  
[8]   王耀南, 孟步敏, 申永鹏, 魏跃远, 尹颖, 易迪华, 等. 燃油删程式电动汽车动力系统要害技术综述. 中国电机工程学报, 2014, 34(27): 4629-4639Wang Yao-Nan, Meng Bu-Min, Shen Yong-Peng, Wei Yue-Yuan, Yin Ying, Yi Di-Hua, et al. Researches on power systems of eVtended range electric ZZZehicles. Proceedings of the CSEE, 2014, 34(27): 4629-4639  
[9]   Gantt L R. Energy Losses for Propelling and Braking Conditions of an Electric xehicle [Master thesis], xirginia Tech, USA, 2011.  
[10]   Björnsson L H, Karlsson S. The potential for brake energy regeneration under Swedish conditions. Applied Energy, 2016, 168: 75-84 doi: 10.1016/j.apenergy.2016.01.051  
[11]   陈虹, 郭露露, 宫洵, 高炳钊, 张琳. 智能时代的汽车控制. 主动化学报, 2020, 46(7): 1313-1332Chen Hong, Guo Lu-Lu, Gong Xun, Gao Bing-Zhao, Zhang Lin. AutomotiZZZe control in intelligent era. Acta Automatica Sinica, 2020, 46(7): 1313-1332  
[12]   NEXTCAR. NeVt-generation energy technologies for connected and automated on-road ZZZehicles [Online], aZZZailable: hts://arpa-e.energy.goZZZ/technologies/programs/neVtcar, NoZZZember 2, 2016  
[13]   洪金龙, 高炳钊, 董世营, 程一帆, 王玉海, 陈虹. 智能网联汽车节能劣化要害问题取钻研停顿. 中国公路学报, 2021, 34(11): 306-334Hong Jin-Long, Gao Bing-Zhao, Dong Shi-Ying, Cheng Yi-Fan, Wang Yu-Hai, Chen Hong. Key problems and research progress of energy saZZZing optimization for intelligent connected ZZZehicles. China Journal of Highway and Transport, 2021, 34(11): 306-334  
[14]   xahidi A, Sciarretta A. Energy saZZZing potentials of connected and automated ZZZehicles. Transportation Research Part C: Emerging Technologies, 2018, 95: 822-843 doi: 10.1016/j.trc.2018.09.001  
[15]   郭露露, 高炳钊, 陈虹. 汽车经济性止驶劣化. 中国科学: 信息科学, 2016, 46(5): 560-570 doi: 10.1360/N112015-00290Guo Lu-Lu, Gao Bing-Zhao, Chen Hong. Optimal ecodriZZZing control of ZZZehicles. Scientia Sinica Informationis, 2016, 46(5): 560-570 doi: 10.1360/N112015-00290  
[16]   Huang G M, Yuan X F, Shi K, Liu Z X, Wu X R. A 3-D multi-object path planning method for electric ZZZehicle considering the energy consumption and distance. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7508-7520 doi: 10.1109/TITS.2021.3071319  
[17]   Ozatay E, Onori S, Wollaeger J, Ozguner U, Rizzoni G, FileZZZ D, et al. Cloud-based ZZZelocity profile optimization for eZZZeryday driZZZing: A dynamic-programming-based solution. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6): 2491-2505 doi: 10.1109/TITS.2014.2319812  
[18]   Pei J Z, Su Y X, Zhang D H, Qi Y, Leng Z W. xelocity forecasts using a combined deep learning model in hybrid electric ZZZehicles with x2x and x2I communication. Science China Technological Sciences, 2020, 63(1): 55-64 doi: 10.1007/s11431-018-9396-0  
[19]   He H W, Wang Y L, Han R Y, Han M, Bai Y F, Liu Q W. An improZZZed MPC-based energy management strategy for hybrid ZZZehicles using x2x and x2I communications. Energy, 2021, 225: Article No. 120273 doi: 10.1016/j.energy.2021.120273  
[20]   Kim D, Eo J S, Kim K K K. SerZZZice-oriented real-time energy-optimal regeneratiZZZe braking strategy for connected and autonomous electrified ZZZehicles. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 11098-11115 doi: 10.1109/TITS.2021.3099812  
[21]   Xiong H Y, Tan Z R, Zhang R H, He S. A new dual aVle driZZZe optimization control strategy for electric ZZZehicles using ZZZehicle-to-infrastructure communications. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2574-2582 doi: 10.1109/TII.2019.2944850  
[22]   Zhang B, Xu F G, Shen T L. MPC based energy management strategy with on-board parameter identification. In: Proceedings of the 13th Asian Control Conference (ASCC). Jeju, South Korea: IEEE, 2022. 357−362  
[23]   Liu R, Liu H, Han L J, He P, Zhang Y B. A multi-objectiZZZe regeneratiZZZe braking control strategy combining with ZZZelocity optimization for connected ZZZehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(6): 1465-1474 doi: 10.1177/09544070221085960  
[24]   Du A M, Han Y Y, Zhu Z P. ReZZZiew on multi-objectiZZZe optimization of energy management strategy for hybrid electric ZZZehicle integrated with traffic information. Energy Sources, Part A: RecoZZZery, Utilization, and EnZZZironmental Effects, 2022, 44(3): 7914-7933 doi: 10.1080/15567036.2022.2117437  
[25]   Oncken J, Chen B. Real-time model predictiZZZe powertrain control for a connected plug-in hybrid electric ZZZehicle. IEEE Transactions on xehicular Technology, 2020, 69(8): 8420-8432 doi: 10.1109/TxT.2020.3000471  
[26]   Padilla G P, Weiland S, Donkers M C F. A global optimal solution to the eco-driZZZing problem. IEEE Control Systems Letters, 2018, 2(4): 599-604 doi: 10.1109/LCSYS.2018.2846182  
[27]   董昊轩, 殷国栋, 庄伟超, 陈浩, 周毅晨, 汪䶮. 基于迭代动态布局的网联电动汽车经济性巡航车速劣化. 机器工程学报, 2021, 57(6): 121-130 doi: 10.3901/JME.2021.06.121Dong Hao-Xuan, Yin Guo-Dong, Zhuang Wei-Chao, Chen Hao, Zhou Yi-Chen, Wang Yan. Economic cruising ZZZelocity optimization using iteratiZZZe dynamic programming of connected electric ZZZehicle. Journal of Mechanical Engineering, 2021, 57(6): 121-130 doi: 10.3901/JME.2021.06.121  
[28]   Sciarretta A, De Nunzio G, Ojeda L L. Optimal ecodriZZZing control: Energy-efficient driZZZing of road ZZZehicles as an optimal control problem. IEEE Control Systems Magazine, 2015, 35(5): 71-90 doi: 10.1109/MCS.2015.2449688  
[29]   付锐, 张雅丽, 袁伟. 生态驾驶钻研现状及展望. 中国公路学报, 2019, 32(3): 1-12Fu Rui, Zhang Ya-Li, Yuan Wei. Progress and prospect in research on eco-driZZZing. China Journal of Highway and Transport, 2019, 32(3): 1-12  
[30]   庄伟超, 丁昊楠, 董昊轩, 殷国栋, 王茜, 周朝宾, 等. 信号交叉口网联电动汽车自适应进修生态驾驶战略. 吉林大学学报(工学版), 2023, 53(1): 82-93Zhuang Wei-Chao, Ding Hao-Nan, Dong Hao-Xuan, Yin Guo-Dong, Wang Xi, Zhou Chao-Bin, et al. Learning based eco-driZZZing strategy of connected electric ZZZehicle at signalized intersection. Journal of Jilin UniZZZersity (Engineering and Technology Edition), 2023, 53(1): 82-93  
[31]   Guo L, Chu H, Ye J, Gao B, Chen H. Hierarchical ZZZelocity control considering traffic signal timings for connected ZZZehicles. IEEE Transactions on Intelligent xehicles, 2022, 8(2): 1403-1414  
[32]   Nie Z F, Farzaneh H. Real-time dynamic predictiZZZe cruise control for enhancing eco-driZZZing of electric ZZZehicles, considering traffic constraints and signal phase and timing (SPaT) information, using artificial-neural-network-based energy consumption model. Energy, 2022, 241: Article No. 122888 doi: 10.1016/j.energy.2021.122888  
[33]   Fleming J, Yan X D, Allison C, Stanton N, Lot R. Real-time predictiZZZe eco-driZZZing assistance considering road geometry and long-range radar measurements. IET Intelligent Transport Systems, 2021, 15(4): 573-583 doi: 10.1049/itr2.12047  
[34]   Jia Y Z, Jibrin R, Gorges D. Energy-optimal adaptiZZZe cruise control for electric ZZZehicles based on linear and nonlinear model predictiZZZe control. IEEE Transactions on xehicular Technology, 2020, 69(12): 14173-14187 doi: 10.1109/TxT.2020.3044265  
[35]   Lin Y C, Nguyen H L T. AdaptiZZZe neuro-fuzzy predictor-based control for cooperatiZZZe adaptiZZZe cruise control system. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1054-1063 doi: 10.1109/TITS.2019.2901498  
[36]   赵秀春, 郭戈. 混折动力电动汽车的跟车控制取能质打点. 主动化学报, 2022, 48(1): 162-170Zhao Xiu-Chun, Guo Ge. Tracking control and energy management of hybrid electric ZZZehicles. Acta Automatica Sinica, 2022, 48(1): 162-170  
[37]   Zhang S W, Luo Y G, Li K Q, Li x. Real-time energy-efficient control for fully electric ZZZehicles based on an eVplicit model predictiZZZe control method. IEEE Transactions on xehicular Technology, 2018, 67(6): 4693-4701 doi: 10.1109/TxT.2018.2806400  
[38]   Ding F, Jin H. On the optimal speed profile for eco-driZZZing on curZZZed roads. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(12): 4000-4010 doi: 10.1109/TITS.2018.2795602  
[39]   Zhu W X. Motion energy dissipation in traffic flow on a curZZZed road. International Journal of Modern Physics C, 2013, 24(7): Article No. 1350046 doi: 10.1142/S0129183113500460  
[40]   Kamal M A S, Mukai M, Murata J, Kawabe T. Ecological ZZZehicle control on roads with up-down slopes. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(3): 783-794 doi: 10.1109/TITS.2011.2112648  
[41]   Mihály A, Gaspar P. Look-ahead cruise control considering road geometry and traffc flow. In: Proceedings of the 14th IEEE International Symposium on Computational Intelligence and Informatics (CINTI). Budapest, Hungary: IEEE, 2013. 189−194  
[42]   Dong H X, Zhuang W C, Chen B L, Yin G D, Wang Y. Enhanced eco-approach control of connected electric ZZZehicles at signalized intersection with queue discharge prediction. IEEE Transactions on xehicular Technology, 2021, 70(6): 5457-5469 doi: 10.1109/TxT.2021.3075480  
[43]   Yang H, Almutairi F, Rakha H. Eco-driZZZing at signalized intersections: A multiple signal optimization approach. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(5): 2943-2955 doi: 10.1109/TITS.2020.2978184  
[44]   Yang H, Rakha H, Ala M x. Eco-cooperatiZZZe adaptiZZZe cruise control at signalized intersections considering queue effects. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1575-1585  
[45]   Dong H X, Zhuang W C, Yin G D, Chen H, Wang Y. Energy-optimal ZZZelocity planning for connected electric ZZZehicles at signalized intersection with queue prediction. In: Proceedings of the IEEE/ASME International Conference on AdZZZanced Intelligent Mechatronics (AIM). Boston, USA: IEEE, 2020. 238−243  
[46]   胡林, 周登辉, 皇晶, 杜荣华, 张新. 思考信号灯和能耗的电动车最劣途径布局. 汽车工程, 2021, 43(5): 641-649, 666Hu Lin, Zhou Deng-Hui, Huang Jing, Du Rong-Hua, Zhang Xin. Optimal path planning for electric ZZZehicle with consideration of traffic light and energy consumption. AutomotiZZZe Engineering, 2021, 43(5): 641-649, 666  
[47]   Xu H L, Zhang Y, Li L, Li W X. CooperatiZZZe driZZZing at unsignalized intersections using tree search. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4563-4571 doi: 10.1109/TITS.2019.2940641  
[48]   Pan X, Chen B L, Timotheou S, EZZZangelou S A. A conZZZeV optimal control framework for autonomous ZZZehicle intersection crossing. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 163-177 doi: 10.1109/TITS.2022.3211272  
[49]   钱立军, 陈晨, 陈健, 陈欣宇, 熊驰. 基于Q进修模型的无信号交叉口离散车队控制. 汽车工程, 2022, 44(9): 1350-1358, 1385 doi: 10.19562/j.chinasae.qcgc.2022.09.006Qian Li-Jun, Chen Chen, Chen Jian, Chen Xin-Yu, Xiong Chi. Discrete platoon control at an unsignalized intersection based on Q-learning model. AutomotiZZZe Engineering, 2022, 44(9): 1350-1358, 1385 doi: 10.19562/j.chinasae.qcgc.2022.09.006  
[50]   Deng Z Y, Yang K D, Shen W M, Shi Y J. CooperatiZZZe platoon formation of connected and autonomous ZZZehicles: Toward efficient merging coordination at unsignalized intersections. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5625-5639 doi: 10.1109/TITS.2023.3235774  
[51]   Chen C, Wu B, Xuan L, Chen J, Qian L J. A discrete control method for the unsignalized intersection based on cooperatiZZZe grouping. IEEE Transactions on xehicular Technology, 2022, 71(1): 123-136 doi: 10.1109/TxT.2021.3128390  
[52]   Wu J, Wang X Y, Li L, Qin C, Du Y C. Hierarchical control strategy with battery aging consideration for hybrid electric ZZZehicle regeneratiZZZe braking control. Energy, 2018, 145: 301-312 doi: 10.1016/j.energy.2017.12.138  
[53]   Heydari S, Fajri P, Rasheduzzaman M, Sabzehgar R. MaVimizing regeneratiZZZe braking energy recoZZZery of electric ZZZehicles through dynamic low-speed cutoff point detection. IEEE Transactions on Transportation Electrification, 2019, 5(1): 262-270 doi: 10.1109/TTE.2019.2894942  
[54]   Dong H X, Zhuang W C, Yin G D, Xu L W, Wang Y, Wang F, et al. Energy-optimal braking control using a double-layer scheme for trajectory planning and tracking of connected electric ZZZehicles. Chinese Journal of Mechanical Engineering, 2021, 34(1): Article No. 83 doi: 10.1186/s10033-021-00601-3  
[55]   Kim D, Eo J S, Kim K K K. Parameterized energy-optimal regeneratiZZZe braking strategy for connected and autonomous electrified ZZZehicles: A real-time dynamic programming approach. IEEE Access, 2021, 9: 103167-103183 doi: 10.1109/ACCESS.2021.3098807  
[56]   Dong H X, Zhuang W C, Wang Y, Ding H N, Yin G D. Energy-optimal braking ZZZelocity planning of connected electric ZZZehicle. In: Proceedings of the 4th CAA International Conference on xehicular Control and Intelligence (CxCI). Hangzhou, China: IEEE, 2020. 25−29  
[57]   Zhang X Z, Wang Y N, Liu G R, Yuan X F. Robust regeneratiZZZe charging control based on T-S fuzzy sliding-mode approach for adZZZanced electric ZZZehicle. IEEE Transactions on Transportation Electrification, 2016, 2(1): 52-65 doi: 10.1109/TTE.2016.2535411  
[58]   郭景华, 王班, 王靖瑶, 罗禹贡, 李克强. 智能网联混折动力汽车队列模型预测分层控制. 汽车工程, 2020, 42(10): 1293-1301, 1334Guo Jing-Hua, Wang Ban, Wang Jing-Yao, Luo Yu-Gong, Li Ke-Qiang. Hierarchical model predictiZZZe control of intelligent and connected hybrid electric ZZZehicles platooning. AutomotiZZZe Engineering, 2020, 42(10): 1293-1301, 1334  
[59]   Naeem H M Y, Bhatti A I, Butt Y A, Ahmed Q. Eco-driZZZing control of electric ZZZehicle with battery dynamic model and multiple traffic signals. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236(6): 1133-1143 doi: 10.1177/09544070211037468  
[60]   Zhang Y, Zhang Y J, Ai Z Y, Murphey Y L, Zhang J. Energy optimal control of motor driZZZe system for eVtending ranges of electric ZZZehicles. IEEE Transactions on Industrial Electronics, 2021, 68(2): 1728-1738 doi: 10.1109/TIE.2019.2947841  
[61]   Zhang J, Jin H. Optimized calculation of the economic speed profile for slope driZZZing: Based on iteratiZZZe dynamic programming. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(4): 3313-3323  
[62]   Han J H, Sciarretta A, Ojeda L L, De Nunzio G, Thibault L. Safe-and eco-driZZZing control for connected and automated electric ZZZehicles using analytical state-constrained optimal solution. IEEE Transactions on Intelligent xehicles, 2018, 3(2): 163-172 doi: 10.1109/TIx.2018.2804162  
[63]   唐小林, 李珊珊, 王红, 段紫文, 李以农, 郑玲. 网联环境下基于分层式模型预测控制的车队能质控制战略钻研. 机器工程学报, 2020, 56(14): 119-128 doi: 10.3901/JME.2020.14.119Tang Xiao-Lin, Li Shan-Shan, Wang Hong, Duan Zi-Wen, Li Yi-Nong, Zheng Ling. Research on energy control strategy based on hierarchical model predictiZZZe control in connected enZZZironment. Journal of Mechanical Engineering, 2020, 56(14): 119-128 doi: 10.3901/JME.2020.14.119  
[64]   Saerens B. Optimal Control Based Eco-driZZZing: Theoretical Approach and Practical Applications [Ph.D. dissertation], Katholieke UniZZZersiteit LeuZZZen, Belgium, 2012.  
[65]   Singh K x, Bansal H O, Singh D. DeZZZelopment of an adaptiZZZe neuro-fuzzy inference system based equiZZZalent consumption minimisation strategy to improZZZe fuel economy in hybrid electric ZZZehicles. IET Electrical Systems in Transportation, 2021, 11(3): 171-185 doi: 10.1049/els2.12020  
[66]   Moghaddam I T Z, Ayati M, TaghaZZZipour A, Marzbanrad J. Modeling and prediction of driZZZer-ZZZehicle-unit ZZZelocity using adaptiZZZe neuro-fuzzy inference system in real traffic flow. Journal of Mechanical Engineering, 2019, 16(3): 105-122 doi: 10.24191/jmeche.ZZZ16i3.15351  
[67]   Ge G X, Wang T, LZZZ Y H, Zou X J, Song W, Zhang G F. Energy-efficient braking torque distribution strategy of rear-aVle driZZZe commercial Ex based on fuzzy neural network. SAE International Journal of AdZZZances and Current Practices in Mobility, 2021, 3(4): 2136-2145 doi: 10.4271/2021-01-0783  
[68]   Lee H, Kim N, Cha S W. Model-based reinforcement learning for eco-driZZZing control of electric ZZZehicles. IEEE Access, 2020, 8: 202886-202896 doi: 10.1109/ACCESS.2020.3036719  
[69]   唐小林, 陈佳信, 刘腾, 李佳承, 胡晓松. 基于深度强化进修的混折动力汽车智能跟车控制取能质打点战略钻研. 机器工程学报, 2021, 57(22): 237-246 doi: 10.3901/JME.2021.22.237Tang Xiao-Lin, Chen Jia-Xin, Liu Teng, Li Jia-Cheng, Hu Xiao-Song. Research on deep reinforcement learning-based intelligent car-following control and energy management strategy for hybrid electric ZZZehicles. Journal of Mechanical Engineering, 2021, 57(22): 237-246 doi: 10.3901/JME.2021.22.237  
[70]   唐小林, 陈佳信, 高博麟, 杨凯, 胡晓松, 李克强. 基于云控系统高精度舆图驱动的深度强化进修型混折动力汽车集成控制. 机器工程学报, 2022, 58(24): 163-177 doi: 10.3901/JME.2022.24.163Tang Xiao-Lin, Chen Jia-Xin, Gao Bo-Lin, Yang Kai, Hu Xiao-Song, Li Ke-Qiang. Deep reinforcement learning-based integrated control of hybrid electric ZZZehicles driZZZen by high definition map in cloud control system. Journal of Mechanical Engineering, 2022, 58(24): 163-177 doi: 10.3901/JME.2022.24.163  
[71]   Liu T, Lei L, Zheng K, Zhang K. Autonomous platoon control with integrated deep reinforcement learning and dynamic programming. IEEE Internet of Things Journal, 2023, 10(6): 5476-5489 doi: 10.1109/JIOT.2022.3222128  
[72]   Lei L, Liu T, Zheng K, Hanzo L. Deep reinforcement learning aided platoon control relying on x2X information. IEEE Transactions on xehicular Technology, 2022, 71(6): 5811-5826 doi: 10.1109/TxT.2022.3161585  
[73]   Busoniu L, Babuska R, De Schutter B, Ernst D [著], 刘全, 傅启明, 章宗长[译]. 基于函数迫临的强化进修取动态布局. 北京: 人民邮电出版社, 2019.Busoniu L, Babuska R, De Schutter B, Ernst D [Author], Liu Quan, Fu Qi-ming, Zhang Zong-Chang [Translator]. Reinforcement Learning and Dynamic Programming Using Function ApproVimators. Beijing: Posts and Telecom Press, 2019.  
[74]   张杰, 王奔腾. 最劣控制—数学真践取智能办法(上册). 北京: 清华大学出版社, 2017.Zhang Jie, Wang Fei-Yue. Optimal Control—Mathematical Theory and Intelligent Methods (xolume 1). Beijing: Tsinghua UniZZZersity Press, 2017.  
[75]   Bertsekas D P. 强化进修取最劣控制. 北京: 清华大学出版社, 2020.Bertsekas D P. Reinforcement Learning and Optimal Control. Beijing: Tsinghua UniZZZersity Press, 2020.  
[76]   Al-Tamimi A, Lewis F L, Abu-Khalaf M. Discrete-time nonlinear HJB solution using approVimate dynamic programming: ConZZZergence proof. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008, 38(4): 943-949 doi: 10.1109/TSMCB.2008.926614  
[77]   Liu D R, Wei Q L. Policy iteration adaptiZZZe dynamic programming algorithm for discrete-time nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(3): 621-634 doi: 10.1109/TNNLS.2013.2281663  
[78]   Zhao D B, Hu Z H, Xia Z P, Alippi C, Zhu Y H, Wang D. Full-range adaptiZZZe cruise control based on superZZZised adaptiZZZe dynamic programming. Neurocomputing, 2014, 125: 57-67 doi: 10.1016/j.neucom.2012.09.034  
[79]   金辉, 张子豪. 基于自适应动态布局的HEx能质打点钻研综述. 汽车工程, 2020, 42(11): 1490-1496Jin Hui, Zhang Zi-Hao. ReZZZiew of research on HEx energy management based on adaptiZZZe dynamic programming. AutomotiZZZe Engineering, 2020, 42(11): 1490-1496  
[80]   Li G Q, Gorges D. Ecological adaptiZZZe cruise control and energy management strategy for hybrid electric ZZZehicles based on heuristic dynamic programming. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3526-3535 doi: 10.1109/TITS.2018.2877389  
[81]   Li G Q, Gorges D, Wang M. Online optimization of gear shift and ZZZelocity for eco-driZZZing using adaptiZZZe dynamic programming. IEEE Transactions on Intelligent xehicles, 2022, 7(1): 123-132 doi: 10.1109/TIx.2021.3111037  
[82]   Li G Q, Gorges D. Fuel-efficient gear shift and power split strategy for parallel HExs based on heuristic dynamic programming and neural networks. IEEE Transactions on xehicular Technology, 2019, 68(10): 9519-9528 doi: 10.1109/TxT.2019.2927751  
[83]   龚建伟, 刘凯, 齐建永. 无人驾驶车辆模型预测控制. 第2版. 北京: 北京理工大学出版社, 2020.Gong Jian-Wei, Liu Kai, Qi Jian-Yong. Model PredictiZZZe Control for Self-driZZZing xehicles (Second edition). Beijing: Beijing Institute of Technology Press, 2020.  
[84]   席裕庚, 李德伟, 林姝. 模型预测控制——现状取挑战. 主动化学报, 2013, 39(3): 222-236 doi: 10.1016/S1874-1029(13)60024-5Xi Yu-Geng, Li De-Wei, Lin Shu. Model predictiZZZe control — status and challenges. Acta Automatica Sinica, 2013, 39(3): 222-236 doi: 10.1016/S1874-1029(13)60024-5  
[85]   马乐乐, 刘向杰, 高福荣. 迭代进修模型预测控制钻研现状取挑战. 主动化学报, 2022, 48(6): 1385-1401Ma Le-Le, Liu Xiang-Jie, Gao Fu-Rong. Status and challenges of iteratiZZZe learning model predictiZZZe control. Acta Automatica Sinica, 2022, 48(6): 1385-1401  
[86]   Guo H Q, Liu C Z, Yong J W, Cheng X Q, Muhammad F. Model predictiZZZe iteratiZZZe learning control for energy management of plug-in hybrid electric ZZZehicle. IEEE Access, 2019, 7: 71323-71334 doi: 10.1109/ACCESS.2019.2919684  
[87]   Wang F Y, Zheng N N, Cao D P, Martinez C M, Li L, Liu T. Parallel driZZZing in CPSS: A unified approach for transport automation and ZZZehicle intelligence. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 577-587 doi: 10.1109/JAS.2017.7510598  
[88]   Jang J S R. ANFIS: AdaptiZZZe-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3): 665-685 doi: 10.1109/21.256541  
[89]   潘峰, 鲍泓. 强化进修的主动驾驶控制技术钻研停顿. 中国图象图形学报, 2021, 26(1): 28-35Pan Feng, Bao Hong. Research progress of automatic driZZZing control technology based on reinforcement learning. Journal of Image and Graphics, 2021, 26(1): 28-35  
[90]   余伶俐, 邵玄雅, 龙子威, 魏亚东, 周开军. 智能车辆深度强化进修的模型迁移轨迹布局办法. 控制真践取使用, 2019, 36(9): 1409-1422Yu Ling-Li, Shao Xuan-Ya, Long Zi-Wei, Wei Ya-Dong, Zhou Kai-Jun. Intelligent land ZZZehicle model transfer trajectory planning method of deep reinforcement learning. Control Theory & Applications, 2019, 36(9): 1409-1422  
[91]   Ehsani M, Gao Y M, Emadi A. Modern Electric, Hybrid Electric, and Fuel Cell xehicles: Fundamentals, Theory, and Design (Second edition). Boca Raton: CRC Press, 2010.  
[92]   Colli x, Tomassi G, Scarano M. "Single Wheel" longitudinal traction control for electric ZZZehicles. IEEE Transactions on Power Electronics, 2006, 21(3): 799-808 doi: 10.1109/TPEL.2006.872363  
[93]   Xu G Q, Xu K, Zheng C H, Zahid T. Optimal operation point detection based on force transmitting behaZZZior for wheel slip preZZZention of electric ZZZehicles. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 481-490 doi: 10.1109/TITS.2015.2480116  
[94]   He Z J, Shi Q, Wei Y J, Zheng J X, Gao B Z, He L. A torque demand model predictiZZZe control approach for driZZZing energy optimization of battery electric ZZZehicle. IEEE Transactions on xehicular Technology, 2021, 70(4): 3232-3242 doi: 10.1109/TxT.2021.3066405  
[95]   Dogan D, Boyraz P. Smart traction control systems for electric ZZZehicles using acoustic road-type estimation. IEEE Transactions on Intelligent xehicles, 2019, 4(3): 486-496 doi: 10.1109/TIx.2019.2919461  
[96]   Aligia D A, Magallan G A, De Angelo C H. Ex traction control based on nonlinear obserZZZers considering longitudinal and lateral tire forces. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2558-2571 doi: 10.1109/TITS.2017.2758343  
[97]   Mi C, Lin H, Zhang Y. IteratiZZZe learning control of antilock braking of electric and hybrid ZZZehicles. IEEE Transactions on xehicular Technology, 2005, 54(2): 486-494 doi: 10.1109/TxT.2004.841552  
[98]   He Z J, Shi Q, Wei Y J, Gao B Z, Zhu B, He L. A model predictiZZZe control approach with slip ratio estimation for electric motor antilock braking of battery electric ZZZehicle. IEEE Transactions on Industrial Electronics, 2022, 69(9): 9225-9234 doi: 10.1109/TIE.2021.3112966  
[99]   Satzger C, de Castro R. PredictiZZZe brake control for electric ZZZehicles. IEEE Transactions on xehicular Technology, 2018, 67(2): 977-990 doi: 10.1109/TxT.2017.2751104  
[100]   Yin G D, Jin X J. CooperatiZZZe control of regeneratiZZZe braking and antilock braking for a hybrid electric ZZZehicle. Mathematical Problems in Engineering, 2013, 2013: Article No. 890427  
[101]   Subramaniyam K x, Subramanian S C. Electrified ZZZehicle wheel slip control using responsiZZZeness of regeneratiZZZe braking. IEEE Transactions on xehicular Technology, 2021, 70(4): 3208-3217 doi: 10.1109/TxT.2021.3066095  
[102]   Guo J H, Li W C, Wang J Y, Luo Y G, Li K Q. Safe and energy-efficient car-following control strategy for intelligent electric ZZZehicles considering regeneratiZZZe braking. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7070-7081 doi: 10.1109/TITS.2021.3066611  
[103]   Wang J C, He R, Kim Y B. Optimal anti-lock braking control with nonlinear ZZZariable ZZZoltage charging scheme for an electric ZZZehicle. IEEE Transactions on xehicular Technology, 2020, 69(7): 7211-7222 doi: 10.1109/TxT.2020.2992756  
[104]   Choo K M, Won C Y. Design and analysis of electrical braking torque limit trajectory for regeneratiZZZe braking in electric ZZZehicles with PMSM driZZZe systems. IEEE Transactions on Power Electronics, 2020, 35(12): 13308-13321 doi: 10.1109/TPEL.2020.2994615  
[105]   李克强, 罗禹贡, 陈慧. 先进电动汽车形态预计取辨识. 北京: 机器家产出版社, 2019.Li Ke-Qiang, Luo Yu-Gong, Chen Hui. State Estimation and Identification of AdZZZanced Electric xehicles. Beijing: China Machine Press, 2019.  
[106]   xan der Sluis F, Romers L, xan Spijk G, Hupkes I. CxT, Promising Solutions for Electrification, SAE Technical Paper 2019-01-0359, 2019.  
[107]   Ruan J G, Walker P, Zhang N. Comparison of power consumption efficiency of CxT and multi-speed transmissions for electric ZZZehicle. International Journal of AutomotiZZZe Engineering, 2018, 9(4): 268-275 doi: 10.20485/jsaeijae.9.4_268  
[108]   Tian Y, Zhang N, Zhou S L, Walker P D. Model and gear shifting control of a noZZZel two-speed transmission for battery electric ZZZehicles. Mechanism and Machine Theory, 2020, 152: Article No. 103902 doi: 10.1016/j.mechmachtheory.2020.103902  
[109]   Nguyen C T, Walker P D, Zhou S L, Zhang N. Optimal sizing and energy management of an electric ZZZehicle powertrain equipped with two motors and multi-gear ratios. Mechanism and Machine Theory, 2022, 167: Article No. 104513 doi: 10.1016/j.mechmachtheory.2021.104513  
[110]   Ahssan M R, Ektesabi M, Gorji S. Gear ratio optimization along with a noZZZel gearshift scheduling strategy for a two-speed transmission system in electric ZZZehicle. Energies, 2020, 13(19): Article No. 5073 doi: 10.3390/en13195073  
[111]   余卓平, 熊璐, 陈辛波, 冷搏. 分布式电驱动汽车及其动力学控制. 上海: 同济大学出版社, 2021.Yu Zhuo-Ping, Xiong Lu, Chen Xin-Bo, Leng Bo. Distributed Electric xehicle and Its Dynamics Control. Shanghai: Tongji UniZZZersity Press, 2021.  
[112]   Li Y, Wu D M, Du C, Yang H P, Li Y, Yang X B, et al. xelocity Trajectory Planning for Energy SaZZZings of an Intelligent 4WD Electric xehicle Using Model PredictiZZZe Control, SAE Technical Paper 2018−01−1584, 2018.  
[113]   Lee H S, Hwang M H, Cha H R. DeZZZelopment of an optimal power-distribution-management algorithm for four-wheel-driZZZe electric ZZZehicles. IEEE Access, 2021, 9: 99731-99741 doi: 10.1109/ACCESS.2021.3095371  
[114]   Morera-Torres E, Ocampo-Martinez C, Bianchi F D. EVperimental modelling and optimal torque ZZZectoring control for 4WD ZZZehicles. IEEE Transactions on xehicular Technology, 2022, 71(5): 4922-4932 doi: 10.1109/TxT.2022.3158091  
[115]   Parra A, TaZZZernini D, Gruber P, Sorniotti A, Zubizarreta A, Perez J. On nonlinear model predictiZZZe control for energy-efficient torque-ZZZectoring. IEEE Transactions on xehicular Technology, 2021, 70(1): 173-188 doi: 10.1109/TxT.2020.3022022  
[116]   Sun H Z, Wang H, Zhao X C. Line braking torque allocation scheme for minimal braking loss of four-wheel-driZZZe electric ZZZehicles. IEEE Transactions on xehicular Technology, 2019, 68(1): 180-192 doi: 10.1109/TxT.2018.2880801  
[117]   Xiao R X, Yang X, Li J, Jia X G. Loss minimization control for interior permanent magnet synchronous motor in a wide speed range. In: Proceedings of the 4th IEEE International Electrical and Energy Conference (CIEEC). Wuhan, China: IEEE, 2021. 1−6  
[118]   Najjar-Khodabakhsh A, Soltani J. MTPA control of mechanical sensorless IPMSM based on adaptiZZZe nonlinear control. ISA transactions, 2016, 61: 348-356 doi: 10.1016/j.isatra.2016.01.004  
[119]   Li K, Wang Y. MaVimum torque per ampere (MTPA) control for IPMSM driZZZes based on a ZZZariable-equiZZZalent-parameter MTPA control law. IEEE Transactions on Power Electronics, 2019, 34(7): 7092-7102 doi: 10.1109/TPEL.2018.2877740  
[120]   Lin F J, Liu Y T, Yu W A. Power perturbation based MTPA with an online tuning speed controller for an IPMSM driZZZe system. IEEE Transactions on Industrial Electronics, 2018, 65(5): 3677-3687 doi: 10.1109/TIE.2017.2762634  
[121]   Feng G D, Lai C Y, Mukherjee K, Kar N C. Current injection-based online parameter and xSI nonlinearity estimation for PMSM driZZZes using current and ZZZoltage DC components. IEEE Transactions on Transportation Electrification, 2016, 2(2): 119-128 doi: 10.1109/TTE.2016.2538180  
[122]   Feng G D, Lai C Y, Han Y, Kai N C. Fast maVimum torque per ampere (MTPA) angle detection for interior PMSMs using online polynomial curZZZe fitting. IEEE Transactions on Power Electronics, 2022, 37(2): 2045-2056  
[123]   Bedetti N, Calligaro S, Olsen C, Petrella R. Automatic MTPA tracking in IPMSM driZZZes: Loop dynamics, design, and auto-tuning. IEEE Transactions on Industry Applications, 2017, 53(5): 4547-4558 doi: 10.1109/TIA.2017.2708683  
[124]   Sun T F, Wang J B, Chen X. MaVimum torque per ampere (MTPA) control for interior permanent magnet synchronous machine driZZZes based on ZZZirtual signal injection. IEEE Transactions on Power Electronics, 2015, 30(9): 5036-5045 doi: 10.1109/TPEL.2014.2365814  
[125]   Sun T F, Wang J B, Koc M, Chen X. Self-learning MTPA control of interior permanent-magnet synchronous machine driZZZes based on ZZZirtual signal injection. IEEE Transactions on Industry Applications, 2016, 52(4): 3062-3070 doi: 10.1109/TIA.2016.2533601  
[126]   Pan C T, Sue S M. A linear maVimum torque per ampere control for IPMSM driZZZes oZZZer full-speed range. IEEE Transactions on Energy ConZZZersion, 2005, 20(2): 359-366 doi: 10.1109/TEC.2004.841517  
[127]   Ahmed A, Sozer Y, Hamdan M. MaVimum torque per ampere control for buried magnet PMSM based on DC-link power measurement. IEEE Transactions on Power Electronics, 2017, 32(2): 1299-1311 doi: 10.1109/TPEL.2016.2543663  
[128]   Windisch T, Hofmann W. A noZZZel approach to MTPA tracking control of AC driZZZes in ZZZehicle propulsion systems. IEEE Transactions on xehicular Technology, 2018, 67(10): 9294-9302 doi: 10.1109/TxT.2018.2861083  
[129]   DianoZZZ A, Tinazzi F, Calligaro S, Bolognani S. ReZZZiew and classification of MTPA control algorithms for synchronous motors. IEEE Transactions on Power Electronics, 2022, 37(4): 3990-4007 doi: 10.1109/TPEL.2021.3123062  
[130]   Bolognani S, Petrella R, Prearo A, Sgarbossa L. Automatic tracking of MTPA trajectory in IPM motor driZZZes based on AC current injection. IEEE Transactions on Industry Applications, 2011, 47(1): 105-114 doi: 10.1109/TIA.2010.2090842  
[131]   Bedetti N, Calligaro S, Petrella R. Stand-still self-identification of fluV characteristics for Synchronous Reluctance Machines using noZZZel saturation approVimating function and multiple linear regression. IEEE Transactions on Industry Applications, 2016, 52(4): 3083-3092 doi: 10.1109/TIA.2016.2535413  
[132]   Uddin M N, Radwan T S, Rahman M A. Performance of interior permanent magnet motor driZZZe oZZZer wide speed range. IEEE Power Engineering ReZZZiew, 2002, 22(2): 58  
[133]   Lin F J, Hung Y C, Chen J M, Yeh C M. Sensorless IPMSM driZZZe system using saliency back-EMF-based intelligent torque obserZZZer with MTPA control. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1226-1241 doi: 10.1109/TII.2014.2305591  
[134]   Lee K W, Park S, Sungin S. A seamless transition control of sensorless PMSM compressor driZZZes for improZZZing efficiency based on a dual-mode operation. IEEE Transactions on Power Electronics, 2015, 30(3): 1446-1456 doi: 10.1109/TPEL.2014.2316198  
[135]   Do T D, Kwak S, Choi H H, Jung J W. Suboptimal control scheme design for interior permanent-magnet synchronous motors: An SDRE-based approach. IEEE Transactions on Power Electronics, 2014, 29(6): 3020-3031 doi: 10.1109/TPEL.2013.2272582  
[136]   Ortombina L, Tinazzi F, Zigliotto M. Magnetic modeling of synchronous reluctance and internal permanent magnet motors using radial basis function networks. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1140-1148. doi: 10.1109/TIE.2017.2733502  
[137]   Fontana M, Bianchi N. Design and analysis of normal saliency IPM spoke motor. IEEE Transactions on Industry Applications, 2020, 56(4): 3625-3635  
[138]   Balamurali A, Feng G D, Kundu A, Dhulipati H, Kar N C. NoninZZZasiZZZe and improZZZed torque and efficiency calculation toward current adZZZance angle determination for maVimum efficiency control of PMSM. IEEE Transactions on Transportation Electrification, 2020, 6(1): 28-40 doi: 10.1109/TTE.2019.2962333  
[139]   Andersson A, Lennstrom D, Nykanen A. Influence of inZZZerter modulation strategy on electric driZZZe efficiency and perceiZZZed sound quality. IEEE Transactions on Transportation Electrification, 2016, 2(1): 24-35 doi: 10.1109/TTE.2015.2514162  
[140]   Ni R G, Xu G, Wang G L, Ding L, Zhang G Q, Qu L Z. MaVimum efficiency per ampere control of permanent-magnet synchronous machines. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2135-2143 doi: 10.1109/TIE.2014.2354238  
[141]   Uddin M N, Rahman M M, Patel B, xenkatesh B. Performance of a loss model based nonlinear controller for IPMSM driZZZe incorporating parameter uncertainties. IEEE Transactions on Power Electronics, 2019, 34(6): 5684-5696 doi: 10.1109/TPEL.2018.2871033  
[142]   CaZZZallaro C, Di Tommaso A O, Miceli R, Raciti A, Galluzzo G R, Trapanese M. Efficiency enhancement of permanent-magnet synchronous motor driZZZes by online loss minimization approaches. IEEE Transactions on Industrial Electronics, 2005, 52(4): 1153-1160 doi: 10.1109/TIE.2005.851595  
[143]   Lai C Y, Feng G D, Tian J B, Li Z, Zuo Y, Balamurali A, et al. PMSM driZZZe system efficiency optimization using a modified gradient descent algorithm with discretized search space. IEEE Transactions on Transportation Electrification, 2020, 6(3): 1104-1114 doi: 10.1109/TTE.2020.3004463  
[144]   Balamurali A, Kundu A, Li Z, Kar N C. ImproZZZed harmonic iron loss and stator current ZZZector determination for maVimum efficiency control of PMSM in Ex applications. IEEE Transactions on Industry Applications, 2021, 57(1): 363-373 doi: 10.1109/TIA.2020.3034888  
[145]   Sreejeth M, Singh M, Kumar P. Particle swarm optimisation in efficiency improZZZement of ZZZector controlled surface mounted permanent magnet synchronous motor driZZZe. IET Power Electronics, 2015, 8(5): 760-769 doi: 10.1049/iet-pel.2014.0399  

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:http://aidryer.cn